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Objectives:

I What’s the problem?

I Can we solve it?

I What kind of dynamics are there?

I How can I make a strange attractor?

I What should we expect?
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Vector fields and flow lines

A vector field of Rn can be represented by a function of the
form f : Rn → Rn. We shall always assume f to be C∞.

Example

f : R2 → R2, f (x , y) = (x + y , x − y).
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A curve of Rn is a function of the form r : R→ Rn (usually
called parametric form of the curve).

Example

The straight line x = y of the plane has the parametric form
r : R→ R2, r(t) = (t, t).

The circle of the x − z plane of R3, having the origin as its
center and radius 1 can be represented as
r : R→ R3, r(t) = (cos(t), 0, sin(t)).
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Let f be a vector field of Rn. Is there a curve r of Rn such
that, at every point p of the curve, the vector f (p) is the
tangent vector of the curve?

In other words, is it true that ṙ(t) = f (r(t)), for some curve
r : R→ Rn, passing through the point r(0) = p ∈ Rn?

Theorem
Yes. And this curve is unique. (existence and uniqueness
theorem for solutions of ODE’s)
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Example

For the vector field f (x , y) = (x + y , x − y) and the point
p = (1, 1) the curve we are looking for is
r(t) = (cosh(

√
2t) +

√
2 sinh(

√
2t), cosh(

√
2t)).
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If we repeat the procedure to find all the curves passing from
all the points of R2, we construct the “phase space” of our
vector field.
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Fundamental problem of Dynamical Systems:

For every vector field, draw its phase portrait.

That’s the problem. The Existence Theorem assures that it
does possess a solution. Yet....
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Dimension 1

In dimension 1, vector fields are just good, old functions of
the form f : R→ R. To compute their phase curves (that is,
functions of the form r : R→ R), one should just solve the
ode: ṙ = f (r). Hopefully, you all know how to do that...

Example

The logistic vector field reads as: f (x) = x(1− x).

To compute its phase curves, one should solve equation:
ṙ = r(1− r).

The solution is r(t) = x0et

1−x0+x0et
, where x0 is the point for

which r(0) = x0.
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Observe that, for x0 = 0, r(t) = 0 and for x0 = 1, r(t) = 1.
Dynamical systems theory has another way to draw the
phase space of the field.

Solve equation f (x) = 0. We find the “fixed points”
x0 = 0, x1 = 1.

In the intervals between the fixed points, function f (x) has a
constant sign, either positive or negative.

Thus, the phase space is:

2 fixed points, 1 heteroclinic curve
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Try to remember:

1: It is always possible to draw the phase space of a 1–d
vector field. It consists just of points and straight segments.
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Dimension 2

In 2 dimensions, flow lines have much more space to fill.

Van der Pol vector field: f (x , y) = (y , (1− x2)y − x)
1 fixed point, 1 periodic orbit



Dynamics of
vector fields

in dimensions 1, 2
and 3

Stavros
Anastassiou

Vector fields and
flow lines

Dimension 1

Dimension 2

Dimension 3

Geometric Lorenz
attractors

A glimpse of
ergodic theory

“Almost all”
dynamical systems

The butterfly

f (x , y) = (x − y2,−y + xy)
3 fixed points, 2 heteroclinic curves
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f (x , y) = (y ,−x2 + x)
2 fixed points, 1 homoclinic curve, an infinity of periodic

orbits
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I How do we draw these portraits?
There are various analytical and numerical techniques
which, when combined, give us a fairly complete picture.

I What kind of orbits are there?
Fixed points, periodic orbits, homoclinic and
heteroclinic orbits.

I Something more complicated than that?
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Well, in dimension 2, the phase space will not be “too”
complicated...

Theorem
Poincaré–Bendixson
Let f : R2 → R2 and p ∈ R2. Suppose that the phase curve
passing, for t = 0, through p remains for every t > 0 in a
compact subset of R2, which contains finitely many fixed
points of f . Then:

I if the phase curve converges to a set which does not
contains fixed points, it converges to a periodic orbit of
f .

I if the phase curve converges to a set that contains both
fixed points and orbits which are not fixed points, then
these other orbits are curves which converge, both in
negative and positive time, to these fixed points.

I if the phase curve converges to a set consisting of just
fixed points, it converges to a unique fixed point.
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Try to remember:

1: It is always possible to draw the phase space of a 1–d
vector field. It consists just of points and straight segments
joining them.

2: In dimension 2 the behaviour of a vector field can be
much more interesting. There are still many open problems
in this area, and sometimes we do have difficulties in
sketching an accurate phase space. But, thanks to Poincaré
and Bendixson, we can be sure that “too” complicated
phase spaces are not to be found.
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Dimension 3

To study what kind of dynamics one should expect in
dimension 3, we choose the famous Lorenz system:

ẋ = σ(y − x)

ẏ = ρx − y − xz

ż = xy − bz

(1)

that is, the system of ODE’s generated by the vector field

f : R3 → R3, f (x , y , z) = (σ(y − x), ρx − y − xz , xy − bz).

Lorenz presented it, at 1963, as a model for weather
prediction. And then, he gave a very detailed study of it...
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Basic properties

We shall always assume that ρ, σ, b > 0.

I Symmetry: Equations are left unchanged under the
transformation (x , y , z) 7→ (−x ,−y , z).

I The z-axis is invariant: For x = y = 0, ẋ = ẏ = 0.

I Solutions remain bounded as t → +∞: Let us define
the function

V : R3 → R, V (x , y , z) = ρx2 + σy2 + σ(z − 2ρ)2.

Its time derivative equals:
dV
dt (x , y , z) = ∂V

∂x
dx
dt + ∂V

∂y
dy
dt + ∂V

∂z
dz
dt =

= −2ρσx2 − 2σy2 + 4bρσz − 2bσz2.
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What is the surface:

−2ρσx2 − 2σy2 + 4bρσz − 2bσz2 = 0?

Equivalently: ρx2 + y2 + b(z − ρ)2 = ρ2.

Thus, V̇ = 0 on this ellipsoid, V̇ > 0 inside this ellipsoid and
V̇ < 0 outside this ellipsoid.

We therefore conclude that, there exists a c > 0 such that
all orbits crossing ellipsoid V (x , y , z) = c will forever remain
into the region bounded by it.
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The Lorenz vector field and the bounding ellipsoid. Here,
σ = 10, b = 8/3, ρ = 2.
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For the Lorenz vector field we can therefore conclude that all
“interesting orbits” are contained in the region of R3

bounded by the ellipsoid found above.

So, what is happening inside this region?

Well, it depends on the parameters (bifurcations occur)....

We fix σ = 10, b = 8/3, while ρ > 0.

Again, how do we study the system?
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The 0 < ρ < 1 case
Proposition
For 0 < ρ < 1 the origin is the unique fixed point of the
Lorenz vector field and it is globally attracting.

Orbits for the Lorenz vector field, ρ = 1/2.
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The 1 ≤ ρ < 13.926 case

I So, for 0 < ρ < 1, the origin is a stable fixed point.

I For ρ > 1, the origin is a saddle, while two other fixed
points have appeared, located at

(±
√
bρ− b,±

√
bρ− b, ρ− 1).

They are both stable.

I Thus, at ρ = 1 a pitchfork bifurcation occurs.

I We also see that two heteroclinics appear, connecting
the origin with the stable equilibria.
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Heteroclinics orbits for the Lorenz vector field,
ρ = 10, σ = 10, b = 8/3. Initial conditions:

(±0.1,±0.1, 0.1).
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The ρ = 13.926 case

At, approximately, this value of ρ the “homoclinic butterfly”
appears. It’s unstable, so difficult to draw...

Homoclinic butterfly.
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The ρ > 13.926 case

I We also have the same number of fixed points.

I There homoclinic butterfly disappears and two
heteroclinic orbits emanating from the origin and
approaching the stable equilibria appear again.

I Yet, something has changed...
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Orbit emanating from the origin approaches one of the
non–trivial fixed points, ρ = 16, σ = 10, b = 8/3. Initial

conditions: (−0.00974357,−0.017466, 0).



Dynamics of
vector fields

in dimensions 1, 2
and 3

Stavros
Anastassiou

Vector fields and
flow lines

Dimension 1

Dimension 2

Dimension 3

Geometric Lorenz
attractors

A glimpse of
ergodic theory

“Almost all”
dynamical systems

The butterfly

The previous orbit and its symmetric one,
ρ = 16, σ = 10, b = 8/3. Initial conditions as above.
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I Global bifurcations continue to occur for increasing
values of ρ.

I Hopf bifurcations give birth to stable periodic orbits
near the non–trivial fixed points.

I For bigger values of ρ the periodic orbits become
unstable.

I So, all fixed points are unstable, the periodic orbits born
from the Hopf bifurcations are also unstable yet all
solutions are still bounded.

I What is happening?
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The Lorenz attractor, ρ = 28, σ = 10, b = 8/3.

What is it and how do we study it?
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Try to remember:

1: It is always possible to draw the phase space of a 1–d
vector field. It consists just of points and straight segments
joining them.

2: In dimension 2 the behaviour of a vector field can be
much more interesting. There are still many open problems
in this area, and sometimes we do have difficulties in
sketching an accurate phase space. But, thanks to Poincaré
and Bendixson, we can be sure that “too” complicated
phase spaces are not to be found.

3:In dimension 3 we still observe familiar objects, like fixed
points, periodic, homoclinic and heteroclinic orbits, just as in
dimension 1 and 2. But it is also possible to come across a
new type of behaviour, which cannot be observed in smaller
dimensions.
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Geometric Lorenz attractors

I What is the Lorenz attractor? First of all, it is an
attractor...

I Definition: Let X be a vector field of Rn. A compact
subset A of Rn is called an attractor of X if there exists
a neighbourhood U of A such that

∩t≥0ϕ
t(U) = A.

I Exercise: Verify that an asymptotically stable fixed
point of a vector field is an attractor.
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I Lorenz attractor is an attractor: denoting by E the
region bounded by the ellipsoid found above, it is

∩t≥0ϕ
t(U) = L,

where L is the Lorenz attractor.

I It’s not a “simple” attractor (like an attracting fixed
point or periodic orbit), since it contains an infinity of
orbits.

I We call it chaotic, since it fulfils the definition of chaos
(more on this in a while) and it presents sensitive
dependence on initial conditions.
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Sensitivity on initial conditions

The x projection of two orbits , ρ = 28, σ = 10, b = 8/3.
Initial conditions: (−0.504,−0.86, 0), (−0.5,−0.86, 0).
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So:

I We cannot solve the system of Lorenz.

I Thus, we do not know the parametric form of its phase
curves.

I Even if we knew the parametric form of the phase
curves, one needs infinite accuracy to locate a specific
initial condition.

I And due to sensitive dependence on initial conditions,
lack of accuracy leads to long–term unpredictability.

How can one predict future phenomena,
under these conditions?
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I Let us recall the words of Poincaré:
“You are asking me to predict future phenomena. If,
quite unluckily, I happened to know the laws of these
phenomena, I could achieve this goal only at the price
of inextricable computations, and should renounce to
answer you; but since I am lucky enough to ignore these
laws, I will answer you straight away. And the most
astonishing is that my answer will be correct”.
H. Poincaré, Le hasard. Revue du Mois 3, 257276
(1907)
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I Following these words, and trying to explain the
structure of the Lorenz attractor, Guckenheimer and
Williams, and (independently) Afraimovich, Bykov and
Shil’nikov, had an idea.

I Forget about equations that can’t be solved and initial
conditions that are known only to a finite accuracy.

I Focus on what you can describe in a simple and
meaningful way.

I So, let us describe what we see in the phase space of
the Lorenz system, in a simple and meaningful way.
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1. Existence of a saddle fixed point

I There exists a fixed point, having one positive
eigenvalue λ1 > 0 and two negatives −λ2 < −λ3 < 0.
Moreover, λ1 > λ3.

I As a result, there exist two orbits, γ1(t), γ2(t),
emanating from the fixed point and “moving away”
from it. These two orbits, along with the fixed point,
are called the unstable manifold of the point and we
denote this manifold as W u(0).

I There also exists a two dimensional manifold consisting
of points the orbits of which tend to the fixed point as
t → +∞. This manifold, denoted by W s(0), is called
the stable manifold of the fixed point.
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2. Existence of a Poincaré section

I There exists a plane surface Σ of R3 such that W s(0)
meets it along a curve Γ (we may assume that Γ is a
straight line). W u(0) meets this surface too.

I Every orbit of the vector field with initial condition on
one of the components of Σ \ Γ return to Σ after some
time t > 0.

I Thus, the Poincaré map P : Σ \ Γ→ Σ \ Γ is defined.
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Actually, Lorenz had found such a plane section Σ. It is a
subset of the z = ρ− 1 plane.
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3. Assumption: Poincaré map acts as follows
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4. Assumption: Existence of an invariant foliation

I Σ can be decomposed in straight line segments, parallel
to Γ, invariant under the action of P.

I This means that, if z1, z2 ∈ Σ belong to a single line
segment, P(z1),P(z2) belong to a single (possibly
different) line segment as well.

I Furthermore, we demand Pn(z1) to converge,
exponentially fast to Pn(z2), for n→∞.
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5. Assumption: The one–dimensional mapping

I The previous assumption assures the existence of a
mapping f : [0, 1]→ [0, 1]. We demand this mapping to
be “expanding enough”.

Expanding mappings of the interval.
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Actually, Lorenz had computed such an one–dimensional
mapping for his system.
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Theorem
Every vector field satisfying conditions 1− 5 above carries an
invariant attractor. This attractor contains an infinity of
unstable periodic orbits, which are dense in it and at least
one orbit which is also dense in the attractor.

By the way, we just came across the definition of chaos.

Definition: Let K be a compact and invariant subset of the
phase space of a vector field. If the set of periodic orbits is
dense in K and there also exists a non–periodic orbit which
is dense in K , the vector field is said to present chaotic
behaviour in K .
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Definition: The attractor presented in every system with
properties 1–5 above is called geometric Lorenz attractor.

But what about the actual vector field of Lorenz?

Theorem
The Lorenz vector field, for the classical parameter values,
carries a geometric Lorenz attractor. (Tucker, 1999)

The proof is another story...
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Try to remember:

1: It is always possible to draw the phase space of a 1–d
vector field. It consists just of points and straight segments
joining them.

2: In dimension 2 the behaviour of a vector field can be
much more interesting. There are still many open problems
in this area, and sometimes we do have difficulties in
sketching an accurate phase space. But, thanks to Poincaré
and Bendixson, we can be sure that “too” complicated
phase spaces are not to be found.

3: In dimension 3 we still observe familiar objects, like fixed
points, periodic, homoclinic and heteroclinic orbits, just as in
dimension 1 and 2. But it is also possible to come across a
new type of behaviour, which cannot be observed in smaller
dimensions.
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4: Yes, chaos leads to long–term unpredictability. But we
can define it, we can prove that it exists and we can totally
study it. It is also quite “simple”: you can produce it with
just 5 ingredients.
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A glimpse of ergodic theory

Back to Lorenz:

“If a flap of a butterfly’s wing can be instrumental in
generating a tornado, it can equally well be instrumental in
preventing a tornado. More generally, I am proposing that
over the years minuscule disturbances neither increase nor
decrease the frequency of occurrence of various weather
events such as tornados; the most they may do is to modify
the sequence in which these events occur.”
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How do we “measure”?

Definition: Let S be a family of subsets of Rn, closed with
respect to the complement and union or intersection of finite
number of its members. A function µ : S → [0,+∞) is
called a measure on (Rn, S) if:

I µ(∅) = 0

I µ(∪Si ) =
∑
µ(Si )

I µ(X ) ≤ µ(Y ) for X ⊆ Y . The triple (Rn,S , µ) is called
a measurable space. If, in addition, µ(Rn) = 1, measure
µ is called a probability measure.

Example: The interval (0, 1), S = the family of its intervals,
µ = the usual “length”.
Remark: Obviously, measures are EXTREMELY important
in all areas of science.
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Definition: If (Rn,S , µ) is a space with measure, a flow
ϕt : Rn → Rn is called measurable, if ϕt(A) ∈ S , ∀A ∈ S
and ∀t ∈ R. We say that the flow preserves the measure, if
µ(ϕt(A)) = µ(A), ∀A ∈ S and t ∈ R.

Theorem
Let the flow ϕt preserve a probability measure µ of Rn and A
be a measurable set of Rn. Then, for almost all x ∈ A there
are infinitely many t ∈ R such that ϕt(x) ∈ A. (Poincaré)
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Sinai–Ruelle–Bowen

Definition: An invariant probability measure µ for the flow
ϕt is called a SRB–measure if, for every positive Lebesque
measure set of points x ∈ Rn and every smooth h : Rn → R,

lim
T→+∞

1

T

∫ T

0
h(ϕt(x))dt =

∫
h(x)dµ.

Remark: This actually means that time and “space”
averages coincide.
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Definition: The support of a measure µ is the set of all
points of Rn, every open neighbourhood of which has
positive measure.

Theorem
The Lorenz system admits a unique SRB–measure, for which
measure the support is exactly the Lorenz attractor.

(Tucker, 1999)

Remark: Time and space averages coincide inside the
Lorenz attractor (what a nice property!) and one could try
to further study the statistical properties of this object.
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Try to remember:

1: It is always possible to draw the phase space of a 1–d
vector field. It consists just of points and straight segments
joining them.

2: In dimension 2 the behaviour of a vector field can be
much more interesting. There are still many open problems
in this area, and sometimes we do have difficulties in
sketching an accurate phase space. But, thanks to Poincaré
and Bendixson, we can be sure that “too” complicated
phase spaces are not to be found.

3: In dimension 3 we still observe familiar objects, like fixed
points, periodic, homoclinic and heteroclinic orbits, just as in
dimension 1 and 2. But it is also possible to come across a
new type of behaviour, which cannot be observed in smaller
dimensions.
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4: Yes, chaos leads to long–term unpredictability. But we
can define it, we can prove that it exists and we totally can
study it. It is also quite “simple”: you can produce it with
just 5 ingredients.

5: Measure theory can also be used to study chaotic
attractors in a meaningful way. Actually, there exists a
branch of mathematics focusing on this subject: it is called
ergodic theory.
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“Almost all” dynamical systems

Can we describe what kind of dynamics “most” dynamical
systems present?

There is actually a plethora of phenomena that can occur:

I hyperbolic behaviour

I singular hyperbolic behaviour

I homoclinic tangencies

I heterodimensional cycles

I singular cycles

I who knows what else?



Dynamics of
vector fields

in dimensions 1, 2
and 3

Stavros
Anastassiou

Vector fields and
flow lines

Dimension 1

Dimension 2

Dimension 3

Geometric Lorenz
attractors

A glimpse of
ergodic theory

“Almost all”
dynamical systems

The butterfly

But now we are equipped with a vocabulary which permits
us to state same conjectures.

Conjecture: The properties below are “prevalent” among
dynamical systems on compact manifolds.

I There exist finitely many attractors.

I Each attractor admits a SRB–measure.

I The union of the supports of these measures covers
almost all the manifold.

Jacob Palis, 1995.
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The butterfly

The butterfly of Lorenz taught us quite a few.

I There exist kinds of complicated behaviour different
from what we expected to see before Lorenz.

I Finitely many bifurcations can lead from extremely
simple to extremely complicated behaviour.

I Complicated behaviour cannot defy our
analytical/numerical tools.

I Topology, geometry, measure theory and a good
computer are invaluable to further enrich our
understanding.

I There are still a lot to do!



Dynamics of
vector fields

in dimensions 1, 2
and 3

Stavros
Anastassiou

Vector fields and
flow lines

Dimension 1

Dimension 2

Dimension 3

Geometric Lorenz
attractors

A glimpse of
ergodic theory

“Almost all”
dynamical systems

The butterfly

Try to remember:

1: It is always possible to draw the phase space of a 1–d
vector field. It consists just of points and straight segments
joining them.

2: In dimension 2 the behaviour of a vector field can be
much more interesting. There are still many open problems
in this area, and sometimes we do have difficulties in
sketching an accurate phase space. But, thanks to Poincaré
and Bendixson, we can be sure that “too” complicated
phase spaces are not to be found.

3: In dimension 3 we still observe familiar objects, like fixed
points, periodic, homoclinic and heteroclinic orbits, just as in
dimension 1 and 2. But it is also possible to come across a
new type of behaviour, which cannot be observed in smaller
dimensions.
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4: Yes, chaos leads to long–term unpredictability. But we
can define it, we can prove that it exists and we totally can
study it. It is also quite “simple”: you can produce it with
just 5 ingredients.

5: Measure theory can also be used to study chaotic
attractors in a meaningful way. Actually, there exists a
branch of mathematics focusing on this subject: it is called
ergodic theory.

6: Don’t quit: a scientist is not someone who knows
everything, but someone who is willing to look everything up.
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